Novel, Low-Cost, Side-Illuminated, Multi-Point Optical Fiber Sensor

Claudio Oliveira Egalon

Science & Sensors Technologies and Loyola Marymount University

coeotalon@aol.com
WHAT IS AN OPTICAL FIBER?

• An optical fiber is a light “pipe”.

• By the same token that a light pipe can guide *water* from one end of the pipe to another, an optical fiber can guide light from one of its end to the other as well.

• Light can be affected by the outside medium surrounding the fiber and the effect in the light can be used to infer what is happening outside the fiber.
FIBER SENSORS BEFORE 2006

<table>
<thead>
<tr>
<th>Fluorescent</th>
<th>Absorption</th>
<th>Scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fiber is coated with a fluorescent film sensitive to the targeted parameter
SIDE ILLUMINATED FIBER

• Distributed/multi point sensing easily accomplished.

• Can detect more than one parameter.

• High spatial resolution at low cost.

• High signal output.

• Simpler detection system.

• Can be adapted to handle almost any optical sensing configuration (fluorescence, absorption and scattering).
SIDE ILLUMINATION
DISTRIBUTED SENSING
SIDE ILLUMINATION
DISTRIBUTED SENSING
Confidence level is higher than 99% due to value of R.

CHLORIDE ION SENSOR
CALIBRATION IN NaCl SOLUTION
TYPES OF FIBER SENSORS

<table>
<thead>
<tr>
<th>Fluorescent</th>
<th>Absorption</th>
<th>Scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resolution of 0.21% in RH.
TYPES OF SIDE ILLUMINATED SENSORS

<table>
<thead>
<tr>
<th>Fluorescent</th>
<th>Absorption</th>
<th>Scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980’s</td>
<td>2006</td>
<td>N/A</td>
</tr>
<tr>
<td>Chloride ions</td>
<td>Relative Humidity</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2008</td>
<td>2008</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>Nitrate</td>
<td>Turbidity</td>
</tr>
</tbody>
</table>

2008
NITRATE SENSOR

Visible and UV Absorption.
NITRATE SENSOR
COLORIMETRIC APPROACH

\[y = -2.3201x + 742.2 \]
\[R^2 = 0.9738 \ (T=10.8^0C) \]
NITRATE SENSOR
UV ABSORPTION APPROACH

![Graph showing the relationship between intensity and [N-NO₃] (ppm). The equation is y = -0.1942x + 1071.5 with R² = 0.9376.](image)
LIQUID LEVEL SENSOR
ACKNOWLEDGEMENTS

• The chloride ion sensor was supported by a grant from the Brazilian funding agency FAPESP, process number 02/02210-8.

• The RH sensor was funded by a Phase I SBIR grant from the National Science Foundation, award number 0539180. Cognizant Program Officer(s): Murali Nair.

• The Nitrate sensor was funded by a Phase I SBIR grant from the US Department of Agriculture, award number 2008-33610-18909. National Program Leader: Dr. William Goldner.